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ABSTRACT 

Construction projects require long hours where workers are subjected to intensive tasks such as hard 
manual labor, heavy lifting, and constrained working postures. Among the physiological metrics, heart 
rate (HR) is reported to be a good indicator of physical stress and workload. HR forecasting models have 
been used in various areas including cardiopathy research, heart attack warning indicator, and early 
physical fatigue detection. However, there are no reported studies on HR modeling and forecasting in the 
construction field.  Modeling and forecasting the HR of construction workers using construction field data 
is of paramount importance due to the direct relationship between activity level and HR. The objective of 
this study is to (1) analyze the effect of physiological factors such as breathing rate, acceleration of torso 
movements, torso posture, and impulse load on the HR of construction workers; and (2) model and 
forecast one-minute-ahead HR for construction workers based on their physical activity using deep 
learning algorithms. To this end, physiological metrics of five bridge maintenance workers performing 
several construction activities were collected. According to the Pearson correlation and entropy based 
mutual information analysis, time-lagged variables, including acceleration of torso movements, torso 
posture, and impulse load, have a significant effect on HR data. The results of deep learning models 
indicate that long short-term memory network (LSTM), bidirectional LSTM (BiLSTM), gated recurrent 
unit (GRU), and bidirectional GRU (BiGRU) have similar predictive performance. However, LSTM had 
the best overall performance in HR prediction with mean absolute error (MAE), root mean square error 
(RMSE), and mean absolute percentage error (MAPE) of 5.4%, 7.34%, and 5.77%, respectively. These 
models have the potential to facilitate the mitigation of cardiovascular strain and enable proactive 
prevention of accidents in the construction industry. 
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1. ASSESSMENT OF PHYSICAL DEMAND IN BRIDGE 
REHABILITATION WORK BY PHYSIOLOGICAL STATUS 
MONITORING 

1.1 Introduction 

The construction industry consistently maintains high rates of injuries and fatalities compared with other 
industries. Working on construction sites involves risk, can be physically demanding, and is significantly 
impacted by environmental conditions. Many construction activities involve heavy lifting, unusual work 
postures, vibrations, pushing and pulling, and forceful exertions (Hartmann and Fleischer 2005). 
Specifically, transportation construction projects involve long hours where workers are subjected to 
intensive tasks such as hard manual work, heavy lifting, and constrained working postures (Roja et al. 
2006). These activities can result in fatigue and exhaustion due to their high physical demand. Some of 
these activities can cause immediate injuries, but most may adversely affect a worker over time. In 
addition to physical health, physically demanding work can also alter the mental state, which may lead to 
decreased productivity, poor judgment, inattentiveness, poor work quality, job dissatisfaction, and 
ultimately more accidents and injuries (Abdelhamid and Everett 2002). The transportation construction 
environment is generally more hazardous than most other work environments since the work is often 
conducted along active roadways and it involves the use of heavy equipment, dangerous tools, and 
hazardous materials, all of which increase the potential for accidents and injuries (Roja et al. 2006; Xing 
et al. 2020). In general, monitoring and controlling physical demand is of paramount importance to 
sustain productivity without undermining workers’ safety and health (Meerding et al. 2005). 

Recent advancements in physiological status monitoring (PSM) have made it possible to measure 
physiological metrics of construction workers in real time. Several studies in the literature reported that 
PSM devices have the potential to be applied in construction sites to monitor physiological metrics with 
acceptable levels of error (Gatti et al. 2014a; Ghafoori et al. 2023a; Hwang et al. 2016). Among the 
physiological metrics, heart rate is identified as a reliable indicator of physical demand and workload; 
therefore, it is widely used in physical demand measurement in the literature (Zhu et al. 2017). For 
example, Hwang and Lee used a type of wristband PSM device to measure the heart rate of 19 
construction workers to assess their physical demand over time. In this study, they used the percentage of 
heart rate reserve (%HRR) as a measure of physical demand. The study results indicated that the physical 
demand of construction workers significantly varies over time. Accordingly, they concluded that physical 
demand of construction workers needs to be continuously monitored during workers’ ongoing work to 
avoid safety and health risks (Choi et al. 2017). In a similar study using a wristband PSM device, Lee et 
al. collected the heart rate data and subjective perceived fatigue level of 12 workers over two days. They 
applied %HRR thresholds to identify the fatigue index for each time interval. The correlation analysis 
indicated statistically meaningful correlation between the fatigue index and self-reported fatigue level(Lee 
et al. 2023). Lunde et al. used %HRR to evaluate cardiovascular load of construction workers in relation 
to individual factors, work ability, musculoskeletal pain, and subjective general health. They collected 
heart rates from 42 construction workers during work and leisure time over three to four days. The study 
results revealed that cardiovascular load is significantly associated with the age and the maximum rate of 
oxygen consumption attainable during physical exertion. Moreover, the study did not find any significant 
relation between cardiovascular load and work ability, musculoskeletal pain, or subjective general health 
(Lunde et al. 2016). Molen et al. evaluated productivity and physical demand of four experienced 
construction workers while mounting two types of plasterboard with different sizes and weights. 
Productivity was measured by the area of plasterboard mounted. Physical demand was determined using 
continuous heart rate monitoring. The results of the two cases showed no difference in duration of lifting, 
carrying, and turning over plasterboards, or the %HRR. However, a majority of the workers preferred the 
smaller plasterboards due to their lighter weights (van der Molen et al. 2007). Hsu et al. investigated the 
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effect of elevation change on fatigue and physiological responses of high-rise building construction 
workers. The study indicates that an increase in elevations results in an increase in post-shift fatigue 
symptoms and heart rate (Hsu et al. 2008). 

Despite the contribution of these studies in assessing physical demand of construction activities, limited 
research exists on assessment of physical demand with respect to physiological acceptable thresholds and 
boundaries. Moreover, there is limited research assessing physical demand in transportation construction. 
The present study is conducted to address these existing gaps. 

1.2 Research Objective 

The objective of the study summarized in this chapter is to apply a non-intrusive system to monitor and 
assess the physical demand of transportation construction workers. Specifically, this study analyzes the 
physical demand variations across different transportation construction activities performed during a 
bridge rehabilitation project with respect to acceptable physiological thresholds and boundaries. 
 

 
  

1.3 Methodology 

The Zephyr Bioharness was used to collect the workers’ physiological metrics such as heart rate, 
breathing rate, heart rate variability, and acceleration within the working hours. Although this device was 
originally designed to optimize the performance of professional athletes, several studies reported 
excellent reliability of using this device to measure heart rate and breathing rate (Lee et al. 2017a; b; 
Pillsbury et al. 2020). The device is worn around the chest with the electrodes picking up the electrical 
signals from the heart. The collected physiological data can be transmitted to a smartphone, a fitness 
watch, or a computer for real-time display or offline analysis (Zephyr 2016). For this study, offline 
analysis was performed. Photographs with timestamps were also recorded to document the physical 
activities being performed to correspond to the heartrates recorded. Five bridge maintenance workers 
volunteered and gave consent to record their physiological metrics using a bioharness while performing 
various construction and maintenance tasks. These volunteers were professional construction workers 
employed by the City and County of Denver. The experiment protocol for the study was reviewed and 
approved by the Institutional Review Board (IRB) at the University of Colorado Denver. Data collection 
was performed while the workers completed a bridge expansion joint replacement project from August 
30, 2022, to September 2, 2022, in Denver, Colorado. Weather conditions were generally sunny and 
warm, with ambient temperatures ranging from 17℃ to 28℃ over the course of the four days. The PSM 
harnesses were issued to the volunteers each morning at the outset of the full day of construction activity. 
Upon completion of the workday, PMS harnesses were removed to log the data from individually 
numbered data pucks. Volunteers received the same numbered puck during all data collection periods in 
order to ensure anonymity of data and allow effective collection of data across different activities. Table 
1.1 shows the schedule of construction and maintenance tasks. Table 1.2 shows the demographic 
characteristics of participants. 

Table 1.1  Schedule of performed construction activities in each day 
Day Performed Activities 

1 Concrete demolishing and jackhammer operation 
2 Concrete demolishing and jackhammer operation 
3 Rebar work, expansion joint placement, and welding 
4 Concrete placement and installing the expansion joint gland (joint seal) 
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The %HRR is used as a measure of physical demand. This method normalizes the original value of heart 
rate by the heart rate reserve of each individual (differences between maximum and minimum heart rate 
of each individual) to provide a relative measurement of physical demands, as shown in Equation (1). 
This method measures the minimum heart rate at rest as a level with no physical intensity and demand. 
The maximum heart rate is calculated based on the age of each individual (Tanaka et al. 2001) as shown 
in Equation (2) and Table 2. Note that the collected heart rate data of different individuals are not 
comparable if not normalized as heart rate depends on each individual’s physical characteristics such as 
body size, age, and fitness level. However, %HRR provides a relative metric that can measure the 
excessive cardiovascular load due to physical exertion by offsetting each individual’s characteristics 
(Hwang and Lee 2017; Wu and Wang 2002). 

%𝐻𝐻𝐻𝐻𝐻𝐻 =
𝐻𝐻𝐻𝐻 −  𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 −  𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(1) 

𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 = 208 −  0.7 × 𝐴𝐴𝐴𝐴𝐴𝐴 (2) 

Where: %𝐻𝐻𝐻𝐻𝐻𝐻 is the percentage of heart rate reserve; 𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is heart rate at rest; 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum 
heart rate and can be calculated according to Equation (2). 

Table 1.2  Demographic characteristics of participants 

Participant 
Number Age Weight 

(Kg) 
Height 
(cm) 

𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
(bpm) 

𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 
(bpm) 

BMI 
(kg/m2) 

1 28 77.1 175 51 188.4 25.1 
2 36 113.4 160 64 182.8 44.3 
3 33 115.6 188 63 184.9 32.7 
4 33 92.5 180 53 184.9 28.4 
5 39 90.7 180 62 180.7 28 

For this study, the authors adopted the Norton et al. categories of physical activity intensity (Norton et al. 
2010) to evaluate workers’ exposure to cardiovascular overload and overexertion. Norton et al. 
categorized the physical activity intensity based on objective measures such as %HRR, metabolic 
equivalent (MET), and subjective measures such as the Borg rating of perceived exertion scale. This 
method classifies the intensity of physical activity into five categories: sedentary, light, moderate, 
vigorous, and high. Moreover, based on the literature, they specify safety suggestions for each of these 
categories. %HRR thresholds, description, and respective suggestions are shown in Table 1.3. The 
aforementioned heart rate zones are used to investigate the variations of physical demands during a 
workday. Note that workers’ safety and health risks depend on both the physical demand and the duration 
of such intensity (Hwang and Lee 2017). To evaluate the overall physical demand of daily construction 
activities, average %HRR over the daily work hours is calculated. According to the literature, an average 
daily %HRR over 30% is considered as having a “high” cardiovascular load for an eight-hour workday 
(Coenen et al. 2018; Gupta et al. 2014; Wu and Wang 2002). 
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Table 1.3  %HRR zones, thresholds, description, and respective suggestions* 
%HRR 
Zones 

%HRR 
Range Description Suggestions 

Sedentary 0%-20% 

Activities that have little 
movements and a low energy 
requirement 
(MET < 1.6) 

An intensity that can be 
sustained over 60 
minutes 

Light 20%-40% 

Activities that do not cause a 
noticeable change in breathing 
rate 
(1.6 < MET < 3) 

An intensity that can be 
sustained over 60 
minutes 

Moderate 40%-60% 
Activities that can be conducted 
while maintaining a conversation 
uninterrupted (3 < MET < 6) 

An intensity that may 
last 30 to 60 minutes 

Vigorous 60%-85% 
Activities in which a conversation 
generally cannot be maintained 
uninterrupted (6 < MET < 9) 

An intensity that may 
last up to 30 minutes 

High 85%-100% Activities that have a very high 
energy requirement (> 9 MET) 

An intensity that 
generally cannot be 
maintained for longer 
than 10 minutes 

*Adapted from  (Norton et al. 2010) 

 

 

1.4 Results and Discussion 

Visualizations of the results show that the workers have similar patterns of %HRR over the working 
hours, as shown in Figure 1.1. Moreover, a comparison of timestamp photographs to the visual analysis of 
the collected data confirmed that %HRR is a good indication of the physical activity intensity. The results 
of the first two days show that concrete demolishing and jackhammer operations require a high physical 
demand over the duration of working hours. Moreover, the results show an approximately 50% reduction 
in %HRR during the break times from 12:00 until 13:00. This indicates the importance of rest and work 
schedules to balance the physical demand of construction workers. The third day required lower physical 
demand compared with the first two days. Based on the results, the most demanding task performed on 
the third day was the placement and adjustment of the expansion joint from 13:00 until 15:15, as shown in 
Figure 1.1. On the fourth day, concrete was placed, which required the lowest physical demand compared 
with the other days. The most demanding task on the fourth day was installing the expansion joint gland 
(joint seal) from 14:45 until 15:15 after the concrete hardened. 

The following additional observations can be noted from Figure 1.1: While general %HRR trends track 
across participants over time, %HRR for individual workers can vary by more than 100% at any time 
point depending on the activity being performed; discrete spikes in %HRR for individuals are observable 
when individuals are performing intensive tasks such as running the jackhammer or lifting heavy 
construction materials. 
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Figure 1.1  %HRR participants in each day 

Based on the heart %HRR zones defined in the methodology, worker’s exposure to cardiovascular 
overload were analyzed. Figure 1.2 shows cumulative time spent in a given %HRR zone. Only one 
participant (participant four) spent a recordable amount of time in the high %HRR zone. This occurred on 
the last day while trying to install the expansion joint gland (joint seal). It is also worth noting that the 
cumulative time of work intensity varied by worker. In other words, participants varied in which days 
they worked the hardest.  Despite the variations of physical demand among different individuals, day by 
day comparison of the results shows that the first two days had the highest portions of %HRR in the 
moderate and vigorous zones, indicating higher demand of the performed activities. On average, all of the 
construction workers stayed in 0%–60% of HRR zones over 80% of working hours, as shown in Figure 
1.2. 
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To have a better understanding of overall demand, average %HRR over daily working hours was 
calculated for each of the participants in each day, as shown in Figure 1.3. It is possible to observe that 
the participant rank of average daily %HRR changes in rank most days. Nevertheless, average daily 
%HRR for all participants remains in the 30%–50% range, with the exception of participant one on the 
fourth day. This range of %HRR is considered as having a “high” cardiovascular load (Coenen et al., 
2018; Gupta et al., 2014; Wu and Wang, 2002) and documents that bridge rehabilitation construction 
work activities are strenuous for long periods of time during the workday. 

 

 

  

 
Figure 1.2  %HRR zones for each participant in each day 

 

 
 

Figure 1.3  Average daily %HRR of participants in each day 
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1.5 Conclusion 

Construction companies are responsible for ensuring the health and safety of their workers while seeking 
to maintain high productivity. Transportation construction projects can be particularly physically 
demanding for construction workers. By recording and monitoring the physical demand of construction 
activities and comparing worker data with established benchmarks of physiological thresholds, companies 
will be better able to 1) assess individual health performance and risks, 2) compare the strenuousness of 
various construction activities, and 3) use such data to establish best practices for task assignment and 
durations under a variety of conditions to maximize the health and safety of their workers. For this study, 
five bridge maintenance workers volunteered and gave consent to record their physiological metrics while 
performing various construction and maintenance tasks on a bridge rehabilitation project. Heart rate 
reserve (%HRR) was used as a measure of physical demand over time. Based on the results of the case 
study, bridge maintenance work can be classified as a high-demand occupation with average daily %HRR 
over 30%. Moreover, the analysis of demand variations across different transportation construction 
activities showed that concrete demolishing and jackhammer operation caused the highest (spikes 
in) %HRR levels and also resulted in the highest daily averages across other activities. Future research 
can be extended to study and optimize the work and rest schedules of construction workers to sustain 
productivity without undermining workers’ safety and health. 
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2. HEART RATE MODELING AND PREDICTION OF 
CONSTRUCTION WORKERS BASED ON PHYSICAL ACTIVITY 
USING DEEP LEARNING 

2.1 Introduction 

Heart Rate Monitoring of Construction Workers 

Heart rate (HR) is the most common physiological metric used to assess the physiological status of 
construction workers (Anwer et al. 2021; Dasmajumder et al. 2023). Cardiac responses to physical 
activity are affected by factors such as the working environment and the intensity, duration, and 
frequency of physical activity. Increase of muscle contraction during physical activity results in increased 
HR as the heart needs to pump more blood around the body (Burton et al. 2004). Accordingly, several 
studies reported a strong correlation between HR and intensity of construction activity (Alferdaws and 
Ramadan 2020; Anwer et al. 2020; Ghafoori et al. 2023b; Ghaleb et al. 2019; Jankovský et al. 2018). In 
this regard, a number of studies used HR thresholds to identify construction workers’ physiologically 
acceptable bounds and HR zones (Abdelhamid and Everett 2002; Chen and Tserng 2022). For example, 
Lee and Migliaccio (Lee and Migliaccio 2014) adopted the Karvonen method (Karvonen et al. 1957), 
which considers five HR zones to assess the acceptable HR bounds. In this method, the HR thresholds are 
determined based on percentage of heart rate reserve (%HRR), which can be calculated based on the 
maximum HR and HR at rest for each individual [%𝐻𝐻𝐻𝐻𝐻𝐻 =  (𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 −  𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) × %𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 +
 𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅]. This method classifies the HR for each individual into a safe zone, productivity zone, 
performance zone, distress zone, and red zone based on the HRR thresholds of 60%–50%, 70%–60%, 
80%–70%, 90%–80%, and 100%–90%, respectively. In a similar study, Adi and Ratnawinanda (2017) 
identified the fatigue levels of construction workers based on the percentage of cardiovascular load (CVL) 
and provided recommendations for each of these levels. They considered the CVL less than 30% as no 
fatigue, workers with CVL values between 30% and 60% are recommended to take a break, and workers 
with CVL values more than 60% are recommended to stop working. Note that CLV in this study is 
calculated based on the following formula: [𝐶𝐶𝐶𝐶𝐶𝐶 = (𝐻𝐻𝐻𝐻𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊–𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀–𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) × 100], 
where 𝐻𝐻𝐻𝐻𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊, 𝐻𝐻𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 , 𝑎𝑎𝐼𝐼𝑎𝑎 𝐻𝐻𝐻𝐻𝑚𝑚𝑀𝑀𝑀𝑀 are working heart rate,, resting heart rate, and maximum heart rate 
respectively. 

Several studies examined HR and physical activities for different types of construction laborers, including 
masonry workers (Anton et al. 2005; Das 2014), rebar workers (Chan et al. 2012a; Wong et al. 2014), 
carpenters (Bates and Schneider 2008), roofers (Lee et al. 2017a), manual laborers (Chang et al. 2009), 
and road maintenance workers (Roja et al. 2006), and simulated construction tasks such as repetitive 
manual material handling (Umer et al. 2020; Yin et al. 2019). For example, Hwang and Lee (2017) used a 
type of wristband PSM device to measure the HR of 19 construction workers to assess their physical 
demand over time. In this study, they used the percentage of HRR as a measure of physical demand. The 
study results revealed that the physical demand of construction workers significantly varies over time. 
Accordingly, they concluded that the physical demand of construction workers needs to be continuously 
monitored during workers’ ongoing work to avoid safety and health risks. In a similar study, using a 
wristband PSM device, Lee et al. (2023) collected HR data and subjective perceived fatigue levels of 12 
workers over a two-day period. They applied HR reserve (%HRR) thresholds to identify the fatigue index 
for each of the time intervals. The correlation analysis indicated a statistically meaningful correlation 
between the fatigue index and self-reported fatigue level. Lunde et al. (2016) used %HRR to evaluate the 
cardiovascular load of construction workers in relation to individual factors, work ability, musculoskeletal 
pain, and subjective general health. They collected the HR of 42 construction workers during work and 
leisure time over three to four days. The study results revealed that cardiovascular load is significantly 
associated with the age and the maximum rate of oxygen consumption attainable during physical exertion. 
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Moreover, the study did not find any significant relation between cardiovascular load and with work 
ability, musculoskeletal pain, or subjective general health. A number of studies applied classification 
methods and used HR as a feature to predict the status of construction workers in terms of fatigue (Aryal 
et al. 2017; Hwang and Lee 2017), mental stress (Hsu et al. 2016), heat stress (Chan et al. 2012b), and 
happiness (Al Jassmi et al. 2019). For example, Aryal et al. (2017) applied several machine learning 
classification methods, including decision tree and SVM, to predict the physical fatigue in construction 
workers. They collected the HR and skin temperature of 12 participants while performing a simulated 
construction task. They used Borg’s Rating of Perceived Exertion (RPE) to label the collected data based 
on the level of fatigue experienced by the participants. The result of this study showed a prediction 
accuracy of 82% based on skin temperature and HR data. 

Although the studies mentioned above have made valuable contributions, their focus has primarily been 
on classification methods rather than time series forecasting for predicting the physiological status of 
construction workers in advance. Additionally, no previous study has reported on forecasting the 
physiological status of construction workers during various construction activities in the field. Therefore, 
there is a need to bridge this gap by focusing on the development of time series forecasting models based 
on real-time monitoring of physiological data to facilitate the mitigation of cardiovascular strain and 
enable proactive prevention of accidents in the construction industry. 

HR Forecasting 

Physiological time series are affected by many external and ambient factors that result in highly nonlinear 
and nonstationary data (Staffini et al. 2022). With the emergence of artificial intelligence, deep learning 
and machine learning methods have been used in clinical contexts for various applications. For example, 
modeling the HR of individuals can support prevention and diagnosis of cardiovascular diseases (Perret-
Guillaume et al. 2009; Xiao et al. 2010), anxiety and depression (Dimitriev et al. 2016; Nahshoni et al. 
2004), and breathing problems (Lutfi 2015). A number of studies focused on modeling and forecasting 
the HR of individuals while performing routine activities such as walking, running, and rope jumping. For 
example, Ming and Jun (2008) presented a feed forward neural network model that uses HR along with 
physical activity time series data to forecast HR. The result of the study showed the importance of 
considering physical activity in HR forecasting. Reiss et al. (2019) used an HR dataset that included eight 
activities performed under close to real-life conditions to identify the best architecture for CNN. They 
compared the performance of the developed CNN with classical HR forecasting algorithms such as 
motion artifacts and HR reconstruction (SpaMA). The study showed that the CNN approach significantly 
outperformed other methods. Similarly, Luo and Wu (2020) developed an HR prediction model using 
LSTM. The result of the study suggested that LSTM predictions can reflect the tendency of HR changes 
in daily life. Zhu et al. (2023) used LSTM neural networks to predict the HR of participants while 
performing four type of activities, including walking, running, and rope jumping. They used the HR 
prediction model to optimize the fitness training by adjusting the speed or workload to reach the 
predetermined training intensity. Staffini et al. (2022) compared the performance of three HR forecasting 
models: autoregressive model, LSTM, and convolutional LSTM. They conducted the study based on the 
HR data of 12 participants while performing daily routine activities. They concluded that HR can be 
considered an autoregressive process, meaning that it can be predicted solely based on its previous values 
due to a strong correlation between the current HR value and the previous HR values. However, note that 
the study’s findings may not be applicable to construction workers due to their exposure to extreme body 
movements and postures, as well as varying environmental conditions, which may affect heart rate. 

  



10 
 

The existing studies in the literature have often modeled the physiological metrics in controlled 
environments while considering daily routine activities. However, the construction activities involve 
intensive and demanding tasks often performed in compulsive working postures that significantly affect 
the physiological data. Modeling and forecasting the HR of construction workers using real construction 
site data is of paramount importance due to the direct relationship between activity level and HR. 
Therefore, there is a need for research that focuses on modeling the physiological status of workers while 
they perform various construction activities at construction sites. 

2.2 Research Objectives 

The objective of the study summarized in this chapter is to analyze the effect of physiological factors such 
as breathing rate, acceleration of torso movements, torso posture, and impulse load on the HR of 
construction workers and to model and forecast the HR of construction workers based on their physical 
activity. To this end, physiological metrics of five bridge maintenance workers, including HR, breathing 
rate, acceleration of torso movements, and torso posture, were collected. Collected data were analyzed, 
and seven deep learning models were developed to identify the best model architecture to forecast the 
one-minute ahead HR of construction workers. The investigated forecasting methods in the present paper 
include convolutional neural network (CNN), long short-term memory network (LSTM), convolutional 
LSTM (CNN-LSTM), bidirectional LSTM (BiLSTM), gated recurrent unit (GRU), convolutional GRU 
(CNN-GRU), and bidirectional GRU (BiGRU). These models have the potential to be used to alert the 
workers or supervisors if accepted HR thresholds are about to be exceeded. 

2.3 Methods 

The present research is performed in five steps including: (1) data collection, (2) data preprocessing, (3) 
feature analysis, (4) development of HR forecasting models, and (5) evaluation of predictive performance 
of the developed models, as shown in Figure 2.1. Five bridge maintenance workers volunteered for the 
experiment, and the physiological time series data of workers were continuously recorded. The case study 
involved the replacement of an expansion joint of a bridge. The collected time series data include HR, 
breathing rate, acceleration of torso movements, and torso posture with resolution of one-second intervals. 
The collected data were analyzed, and seven deep learning models were developed to identify the best 
model architecture to forecast the one-minute ahead HR of construction workers. The details of the 
physiological status monitoring device, the experiment protocol, data analysis, and forecasting models are 
presented in the following sections. 
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Figure 2.1  Research development steps 

Physiological Status Monitoring Device 

A wireless chest-based wearable device called the Zephyr Bioharness was used to collect the 
physiological data of construction workers while performing different construction activities. The Zephyr 
Bioharness is capable of real-time recording of physiological metrics such as HR, breathing rate, 
acceleration of torso movements, and torso posture. Although this device was originally designed to 
enhance the performance of professional athletes, a number of studies reported the reliability of this 
device in measuring HR, acceleration, and posture  of construction workers while performing 
construction activities and without hindering the flexibility and freedom of movements (Gatti et al. 
2014b; Lee et al. 2017b; a; Pillsbury et al. 2020). The device includes an adjustable strap that fits around 
the chest at the lower sternum and a BioModule that is snapped into the strap. The strap contains skin 
conductive electrodes that capture the ECG signals, which are then transmitted to the BioModule attached 
to the strap. Moreover, the strap also contains a pressure sensor which detects torso expansion and 
contraction to measure the breathing rate. The BioModule contains a three-axis accelerometer sensor to 
record the torso acceleration and posture and a microprocessor to process the data. The device is capable 
of recording up to 36 hours of physiological data in its internal memory. The recorded data can be 
transferred to a computer using Omnisense software version 5.1 developed by the manufacturer. The data 
can also be monitored in real time using a receiver and Omnisense-live software version 5.1. 
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The PMS device measures HR using ECG signals and reports it based on beats per minute (BPM) units. 
Breathing rate is measured using a pressure sensor in the strap and is reported based on breaths per minute 
units. Acceleration and peak acceleration are determined based on averages and maximum of the 
acceleration magnitudes over the past one second, respectively, and are reported based on gravitational 
constant (g). Posture is measured using the accelerometer sensor in the BioModule based on degrees from 
vertical position with a range of -180 to +180. Impulse load is calculated by adding up the areas under the 
accelerometer magnitude curve that provides a cumulative measurement of mechanical load for each 
session (day). For example, the impulse load and torso acceleration of participant one throughout the 
workday are shown in Figure 2.2. The device is also capable of estimating the core body temperature and 
heart rate variability (HRV) based on the measured HR data. Note that HRV and core body temperature 
were removed from the set of analyzed features since they are directly estimated based on the HR data. 

 
Figure 2.2  Example of impulse load and torso acceleration throughout a session 

Experiment Protocol 

The experiment protocol for the present study was reviewed and approved by the Colorado Multiple 
Institutional Review Board (COMIRB) at the University of Colorado Denver. The inclusion criteria for 
participants were over 18 years of age and currently working in the construction field. The case study 
project involved the replacement of an expansion joint of a bridge in which several construction activities 
such as concrete demolishing and jackhammer operation, rebar work and welding, concrete placement, 
and brushing were performed. Five bridge maintenance workers (the entire project crew) volunteered for 
the experiment. Studying a small crew decreased the potential for confounding variables such as weather 
and activity being performed. The demographic characteristics of the five participants are shown in Table 
2.1. Note that the demographic characteristics of participants are mentioned for completeness but the 
study did not explore any potential differences in HR among individuals based on those characteristics. 
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The experiment protocol was explained to the participants and written consent was obtained before 
starting the experiment. The volunteers were informed that they could discontinue participation at any 
time and all volunteers fully participated in data collection throughout the study. The project was 
performed in five consecutive days in September 2022. Construction work started at 8:00 am and ended at 
5:00 pm every day with a lunch break from 12:30 pm to 1:30 pm. A research assistant insured that the 
PSM devices were properly placed on the workers and collected them at the end of working hours. The 
physiological data, including HR, breathing rate, acceleration of torso movements, and torso posture, 
were continuously recorded during working hours and lunch breaks with a sampling frequency of one 
hertz, which corresponded to a resolution of one-second intervals between each data point. To ensure the 
confidentiality of the subjects and avoid collecting personal information, a unique number was assigned 
to each PSM device, and the same device was provided to each individual on each day of the study. At the 
end of each day, the collected data were transferred from the PSM devices to a computer and organized 
based on the volunteers’ assigned numbers. 

Table 2.1  Demographic characteristics of participants 
Participant Number Age Weight (Kg) Height (cm) BMI (Kg/m2) * 

1 28 77.1 175 25.1 
2 36 113.4 160 44.3 
3 33 115.6 188 32.7 
4 33 92.5 180 28.4 
5 39 90.7 180 28 

* Body mass index (BMI) is calculated based on weight in kilograms, divided by the square of the participant’s height in meters. 

Data Preprocessing 

Data preprocessing is performed to prepare the raw collected data to be used for development of HR 
forecasting models. The preprocessing was performed in six steps: (1) concatenation of the collected data, 
(2) data cleaning, (3) imputation of the missing values, (4) data resolution processing, (5) creation of 
training and testing datasets, and (6) data standardization. Omnisense software was used to generate a 
spreadsheet of timeseries physiological data such as HR, breathing rate, acceleration of torso movements, 
torso posture, and estimated core-temperature with the resolution of one-second intervals in CSV format 
files for each individual and for each day (session). In the first step, physiological data were concatenated 
based on the assigned number of each participant. The PSM device reports an HR confidence for each of 
the recorded one-second time intervals that is calculated based on signal-to-noise ratio of the ECG and 
worn detection. According to Zephyr’s documentations, data points with confidence lower than 20% were 
considered as noise due to faulty collection and were removed from the datasets (Zephyr Technology 
Corp 2017). The missing data points in each day were imputed using linear interpolation. Next, the time 
series data with resolution of one-second intervals were aggregated to one-minute intervals. After 
obtaining the clean data with resolution of one-minute intervals, the dataset for each of the individuals 
were divided into two subsets with portions of 80% and 20% for the purpose of training and testing of the 
forecasting models, respectively. Finally, the maximum and the minimum values for each metric from the 
training datasets were used to standardize both the training and testing datasets, as shown in Equation (1). 

M𝑋𝑋𝑅𝑅𝑅𝑅𝑠𝑠 = (𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) (𝑋𝑋𝑚𝑚𝑀𝑀𝑀𝑀 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)⁄  (1) 

Where: 𝑋𝑋𝑅𝑅𝑅𝑅𝑠𝑠 is the standardized value of the feature 𝑋𝑋, and  𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑋𝑋𝑚𝑚𝑀𝑀𝑀𝑀 are the minimum and 
maximum values of the feature 𝑋𝑋 observed in the training dataset. 
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Feature Analysis 

Feature analysis is performed to evaluate the dependencies between each of the physiological metrics and 
their effect on the HR values. Moreover, feature analysis provides an insight to identify the best subset of 
predictor metrics for development of forecasting models to minimize the generalization error and reduce 
the computational time (Iguyon and Elisseeff 2003). To this end, Pearson correlation method and mutual 
information (MI) from information theory were utilized for feature analysis. Pearson correlation 
coefficient is a well-known parametric method to identify the linear dependencies between variables. 
Note that this method considers a Gaussian distribution of the data and cannot capture nonlinear 
dependencies. This method calculates the ratio between the covariance and the product of standard 
deviations of two variables to determine their dependency. Pearson correlation coefficient between 
variable 𝑋𝑋 and 𝑌𝑌 can be calculated as shown in Equation (2). 

𝑟𝑟(𝑋𝑋,𝑌𝑌) =
∑ (𝑋𝑋𝑚𝑚 − 𝑋𝑋�)(𝑌𝑌𝑚𝑚 − 𝑌𝑌�)𝑁𝑁
𝑚𝑚=1

�∑ (𝑋𝑋𝑚𝑚 − 𝑋𝑋�)2𝑁𝑁
𝑚𝑚=1 ∑ (𝑌𝑌𝑚𝑚 − 𝑌𝑌�)2𝑁𝑁

𝑚𝑚=1
(2) 

Where: 𝑟𝑟(𝑋𝑋,𝑌𝑌) is the Pearson correlation coefficient between variable 𝑋𝑋 and 𝑌𝑌; 𝑁𝑁 is the total number of 
data points in entire dataset; 𝑋𝑋𝑚𝑚 and 𝑌𝑌𝑚𝑚 are the values of 𝑋𝑋 and 𝑌𝑌 for data point 𝐼𝐼, respectively; 𝑋𝑋� and 𝑌𝑌� are 
the average values of 𝑋𝑋 and 𝑌𝑌 over all data points in the entire dataset, respectively. 

In contrast to Pearson correlation coefficient, MI is an entropy-based nonparametric method that does not 
make assumptions about the statistical distribution of the data. The MI method can detect linear and non-
linear dependencies between variables (Papana and Kugiumtzis 2008). Specifically, it measures the 
amount of information that can be obtained about the target value by observing the features. In the present 
study, the predictor features, and the target values (HR) are continuous variables. For this specific type of 
problems, k-nearest neighbors-based MI estimation (KNN-MI) method is reported to identify MI more 
reliably compared with other methods that use “binning” of the data (Kraskov et al. 2004; Ross 2014). 
Therefore, the KNN-MI method was applied to evaluate the influence of the features on the target 
variable. Mutual information between variable 𝑋𝑋 and 𝑌𝑌 can be calculated based on average 𝐼𝐼𝑚𝑚 scores for 
all datapoints as shown in Equation (3) to Equation (5). 

𝐼𝐼(𝑋𝑋,𝑌𝑌) =
∑ 𝐼𝐼𝑚𝑚𝑁𝑁
𝑚𝑚=1
𝑁𝑁

(3) 

𝐼𝐼𝑙𝑙̇ = 𝜓𝜓(𝑁𝑁) − 𝜓𝜓�𝑁𝑁𝑀𝑀𝑖𝑖� + 𝜓𝜓(𝐾𝐾) − 𝜓𝜓(𝑚𝑚𝑚𝑚) (4) 

𝜓𝜓(𝐼𝐼) = ln(𝐼𝐼) −  
1
2𝐼𝐼

(5) 

Where: 𝐼𝐼(𝑋𝑋,𝑌𝑌) is the MI between variable 𝑋𝑋 and 𝑌𝑌; 𝑁𝑁𝑀𝑀𝑖𝑖 is number of data points whose value equals 𝑥𝑥𝑚𝑚 
in the entire dataset; 𝐾𝐾 is number of neighbors that is considered for the analysis (number of neighbors 
whose value should be equal to 𝑥𝑥𝑚𝑚 in our analysis); 𝑚𝑚𝑚𝑚 is the number of neighbors within the distance to 
the 𝐾𝐾th neighbor of data point 𝐼𝐼; 𝜓𝜓(𝐼𝐼) is the digamma function that can be calculated as shown in 
Equation (5). 
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Heart Rate Forecasting Models 

The objective of the developed models is to forecast the one-minute-ahead HR of the construction 
workers based on time-lagged physiological and activity-related metrics, such as torso posture and 
acceleration. These types of forecasting problems are known as time series multivariate forecasting. In the 
present study, a personalized approach was taken by developing deep learning models for each individual 
participant. These deep learning algorithms consider the unique characteristics and patterns of each 
participant and inherently consider the participant’s personality traits as they utilize data from the same 
person to predict future outcomes for that individual. Accordingly, seven deep learning model 
architectures were considered to identify the best architecture to model and forecast the construction 
workers’ HR. The investigated deep learning methods in the present paper are (1) CNN, (2) LSTM, (3) 
CNN-LSTM, (4) BiLSTM, (5) GRU, (6) CNN-GRU, and (7) BiGRU. These methods are selected based 
on their reported suitability for multivariate time series forecasting (Han et al. 2021), as well as their 
previous use in heart rate modeling and forecasting studies in non-construction work settings, as 
discussed in the present paper’s literature review. The architecture and hyperparameters of these seven 
models are shown in Table 2.2 to 2.8, respectively. The mathematical formulation of these algorithms are 
not discussed here as they can be found in deep learning resources (Courville & Goodfellow, 2016; 
Czum, 2020). The models were developed using Keras interface for TensorFlow in Python, and all the 
models utilize Adam optimizer with loss function of mean squared error for 200 epochs. Note that the 
deep learning models presented in this paper were developed using a trial-and-error approach to 
determine their architecture; this was due to the high computational requirements of deep learning models 
that make it impractical to perform an exhaustive grid search for model hyperparameters. 

Table 2.2  Architecture of CNN model 
Layer 

Number Layer type Activation 
Function 

Number of 
Parameters Number of Cells 

1 One-dimensional convolution - 520 - 
2 Max Pooling - 0 - 
3 Flatten - 0 - 
4 Dense ReLU 24,200 200 
5 Dense Linear 201 - 

Table 2.3  Architecture of LSTM model 
Layer 

Number Layer type Activation 
Function 

Number of 
Parameters Number of Cells 

1 LSTM Hyperbolic 
Tangent 164,000 200 

2 LSTM Hyperbolic 
Tangent 320,800 200 

3 Dense Linear 201 - 
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Table 2.4  Architecture of CNN-LSTM model 
Layer 

Number Layer type Activation 
Function 

Number of 
Parameters 

Number of 
Cells 

1 One-dimensional convolution - 520 - 
4 Max Pooling - 0 - 

3 LSTM Hyperbolic 
Tangent 192,800 200 

4 Dense Linear 201 - 

Table 2.5  Architecture of BiLSTM model 
Layer 

Number Layer type Activation 
Function 

Number of 
Parameters Number of Cells 

1 Bidirectional LSTM Hyperbolic 
Tangent 328,000 200 

2 Bidirectional LSTM Hyperbolic 
Tangent 961,600 200 

3 Dense Linear 401 - 

Table 2.6  Architecture of GRU model 
Layer 

Number Layer type Activation 
Function 

Number of 
Parameters Number of Cells 

1 GRU Hyperbolic 
Tangent 123,600 200 

2 GRU Hyperbolic 
Tangent 241,200 200 

3 Dense Linear 201 - 

Table 2.7  Architecture of CNN- GRU model 
Layer 

Number Layer type Activation 
Function 

Number of 
Parameters 

Number of 
Cells 

1 One-dimensional convolution - 520 - 
4 Max Pooling - 0 - 

3 GRU Hyperbolic 
Tangent 145,200 200 

4 Dense Linear 201 - 

Table 2.8  Architecture of BiGRU model 
Layer 

Number Layer type Activation 
Function 

Number of 
Parameters Number of Cells 

1 Bidirectional GRU Hyperbolic 
Tangent 247,200 200 

2 Bidirectional GRU Hyperbolic 
Tangent 722,400 200 

3 Dense Linear 401 - 
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Predictive Performance Evaluation Metrics 

Three commonly used machine learning evaluation metrics include mean absolute error (MAE), root 
mean square error (RMSE), and mean absolute percentage error (MAPE). These are applied in the present 
study to evaluate the predictive performance of the developed models. MAE reports the average of 
absolute differences between the predicted and true value of datapoints in the test dataset, which provides 
a general insight into the predictive performance of the models. Similar to MAE, MAPE reports the 
average of relative error of datapoints in the test dataset in percentage, which provides the overall error in 
predictions with respect to the magnitude of true values. Finally, RSME reflects the average of squared 
differences between the predicted and true value of datapoints in which larger errors have a 
disproportionately larger effect on RSME value. MAE, MAPE, and RSME can be calculated based on 
predicted and true values of datapoints, as shown in equations (6), (7), and (8), respectively. 

MAE(𝐼𝐼, 𝐼𝐼�)  =
1
𝑁𝑁𝑅𝑅
�|𝐼𝐼𝑚𝑚 − 𝐼𝐼�𝑚𝑚|
𝑁𝑁𝑡𝑡

𝑚𝑚=1

 (6) 

𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀 =
1
𝑁𝑁𝑅𝑅
−�

|𝐼𝐼𝑚𝑚 − 𝐼𝐼�𝑚𝑚|
𝐼𝐼𝑚𝑚

𝑁𝑁𝑡𝑡

𝑚𝑚=1

 (7) 

RSME(𝐼𝐼, 𝐼𝐼�)  = ��
(𝐼𝐼𝑚𝑚 − 𝐼𝐼�𝑚𝑚)2

𝑁𝑁𝑅𝑅

𝑁𝑁𝑡𝑡

𝑚𝑚=1

2

 (8) 

Where: 𝐼𝐼𝐼𝐼 represents the true value of datapoint 𝐼𝐼, 𝐼𝐼� represents the predicted value of datapoint 𝐼𝐼, 𝑁𝑁𝑅𝑅 is 
total number of samples in the test dataset. 

 

  

2.4 Results 

The analyzed physiological metrics include HR, breathing rate, acceleration, peak acceleration, posture, 
and impulse load. Statistical distributions of the metrics for each of the participants are shown in Table 
2.9. Note that 0.28%, 2.35%, 2.24%, 1.69%, and 0.19% of datapoints for participants one to five had HR 
confidence values below 20% and were removed from the dataset based on the on the PSM device 
instructions (Zephyr Technology Corp 2017). 
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Table 2.9  Statistical distributions of the collected metrics 

Subject Metric 
Heart Rate 

(Beats 
Per Minu) 

Heart Rate 
Confidence 

(Percentage) 

Breathing 
Rate 

(Breaths 
per minute)  

Acceleration 
(g) 

Peak 
Acceleration 

(g) 

Posture 
(Degrees) 

Impulse Load 
(kg*m/s) 

1 

Mean Value 101.62 96.95 21.45 0.16 0.32 26.48 18,657.21 
Standard Deviation 23.04 8.43 3.93 0.17 0.32 40.82 10,290.31 

Minimum Value 51.00 21.00 10.00 0.00 0.01 -100.00 0.00 
25th percentile 85.00 99.00 19.00 0.03 0.08 -11.00 10,474.00 
50th percentile 101.00 100.00 21.00 0.11 0.22 21.00 18,512.00 
75th percentile 117.00 100.00 24.00 0.23 0.45 60.00 26,481.00 

Maximum Value 171.00 100.00 36.00 1.35 8.16 138.00 42,436.00 

2 

Mean Value 109.23 81.54 18.32 0.10 0.20 -2.50 11,722.24 
Standard Deviation 21.49 24.68 4.23 0.13 0.21 38.17 6,739.83 

Minimum Value 64.00 21.00 9.00 0.00 0.01 -108.00 0.00 
25th percentile 96.00 68.00 15.00 0.02 0.06 -21.00 6,275.00 
50th percentile 106.00 96.00 18.00 0.05 0.13 -12.00 10,749.00 
75th percentile 118.00 100.00 21.00 0.14 0.28 22.00 16,739.50 

Maximum Value 239.00 100.00 35.00 1.02 6.89 158.00 26,013.00 

3 

Mean Value 107.59 80.27 17.27 0.11 0.21 -89.87 13,904.01 
Standard Deviation 16.11 24.05 3.91 0.12 0.22 60.86 7,761.86 

Minimum Value 63.00 21.00 9.00 0.01 0.02 -179.00 0.00 
25th percentile 96.00 65.00 14.00 0.02 0.06 -121.00 7,204.00 
50th percentile 106.00 92.00 17.00 0.06 0.14 -117.00 13,909.00 
75th percentile 118.00 100.00 20.00 0.15 0.30 -70.00 19,968.00 

Maximum Value 183.00 100.00 39.00 1.27 9.22 180.00 31,471.00 

4 

Mean Value 101.96 96.46 18.48 0.12 0.24 10.54 13,443.49 
Standard Deviation 17.30 9.82 4.00 0.14 0.23 35.80 8,007.79 

Minimum Value 53.00 21.00 9.00 0.00 0.01 -83.00 0.00 
25th percentile 90.00 99.00 16.00 0.03 0.07 -17.00 6,533.00 
50th percentile 101.00 100.00 18.00 0.08 0.16 -11.00 13,440.00 
75th percentile 113.00 100.00 21.00 0.16 0.33 38.00 20,201.00 

Maximum Value 176.00 100.00 34.00 1.14 6.31 120.00 30,999.00 

5 

Mean Value 98.72 87.53 21.29 0.11 0.23 10.49 11,645.10 
Standard Deviation 14.43 21.23 4.23 0.12 0.24 38.79 6,636.37 

Minimum Value 62.00 21.00 9.00 0.00 0.02 -114.00 0.00 
25th percentile 88.00 84.00 18.00 0.03 0.07 -18.00 5,785.00 
50th percentile 97.00 100.00 21.00 0.07 0.15 3.00 11,389.00 
75th percentile 108.00 100.00 24.00 0.15 0.30 42.00 16,626.00 

Maximum Value 230.00 100.00 38.00 1.15 7.20 112.00 26,556.00 
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Figure 2.3  Correlation heatmap of the physiological metrics 

In the first step of the analysis, Pearson correlation is used to evaluate the multicollinearity between 
physiological metrics. Different studies employ varying thresholds for interpreting the Pearson correlation 
coefficient. Typically, a commonly used threshold for indicating strong correlations is 0.7 < |𝑟𝑟|. 
However, in this study, a slightly lower threshold of 0.5 < |𝑟𝑟| is chosen as a high correlation for two main 
reasons. First, the present study investigates complex relationships between variables that may be 
influenced by multiple factors. Therefore, a lower threshold of 0.5 < |𝑟𝑟| may still capture important 
relationships among the variables, even if they are not as strong as those identified using a higher 
threshold. Second, previous studies in this field have also used a threshold of 0.5 < |𝑟𝑟| to identify high 
correlations (Freedson and Miller 2000; Kuo et al. 2018; Laurino et al. 2020; Sallis et al. 1990). 

The correlation heatmap of the analyzed metrics is displayed in Figure 2.3. The results show high 
correlations (0.5 < |𝑟𝑟| ) between HR and metrics, including peak acceleration, acceleration, and posture, 
with correlation coefficients of 0.64, 0.62, and 0.53, respectively. These positive correlations indicate that 
an increase in the intensity of physical activity results in an increased HR. Among the physiological 
metrics, acceleration and peak acceleration have the highest linear correlation with a correlation 
coefficient of 0.98. 

To evaluate the linear influence of time-lagged physiological metrics on the HR data, Pearson correlation 
between HR at the time 𝐼𝐼 and physiological metrics, including HR, breathing rate, acceleration, peak 
acceleration, posture and impulse load, with time-lagged values of one period (𝐼𝐼 − 1) to 10 periods (𝐼𝐼 −
10) are analyzed, as shown in Figure 2.4. The results suggest a strong (0.5 < |𝑟𝑟| ) linear correlation 
between the HR and its time-lagged values, with a correlation coefficient that ranges from 0.65 to 0.92. 
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Moreover, peak acceleration, acceleration, and posture with time-lagged values of one period (𝐼𝐼 − 1) to 
three periods (𝐼𝐼 − 3), and four periods (𝐼𝐼 − 4) to 10 periods (𝐼𝐼 − 10) have high (0.5 < |𝑟𝑟|) and moderate 
(0.3 < |𝑟𝑟| < 0.5) correlations with the HR, respectively. Finally, the Pearson method suggests low degree 
(0 < |𝑟𝑟| < 0.3) linear correlations between the HR and metrics, including breathing rate and impulse 
load. 

 
Figure 2.4  Dependencies between time-lagged variables and HR using Pearson correlation 

After analysis of linear dependencies of time-lagged physiological metrics and the HR, the KNN-MI 
approach is used to identify possible non-linear relationships. Since there is no systematic approach to 
identify the optimal value of K (Suzuki et al. 2008), the K value of 3 was determined by testing different 
values of K that ranged from 3 to 20. Note that the relative ranking of the features for all the tested K 
values remained unchanged. MI represents the amount of information that one feature can provide about 
the target value and is measured in information unit of bits. The calculated MI values are then normalized 
by entropy of the HR, which is also measured in bits, to quantify how much a known feature can reduce 
the uncertainty in the prediction of HR. Normalizing MI values by the entropy of target value results in 
units of “bits/bits,” as shown in Figure 2.5. The results of MI analysis confirm the Pearson correlation 
results about time-lagged HR values indicate strong dependencies between the HR and its time-lagged 
values with normalized MI of 16%, 11%, 9.8%, 8.2%, 7.3%, 7.2%, 6.6%, 5.9%, 5.1%, and 5% for time-
lagged values of one period (𝐼𝐼 − 1) to 10 periods (𝐼𝐼 − 10), respectively. The MI analysis also confirms 
that known time-lagged values of peak acceleration, acceleration, and posture can reduce the uncertainty 
in prediction of HR, as shown in Figure 2.5. The normalized MI values for HR, peak acceleration, 
acceleration, and posture decrease as the period number of time-lagged metrics increase. This indicates 
that the most recent time-lagged values of metrics have the most influence on the HR data. The Pearson 
method results suggest a low degree linear correlation between the HR and impulse load. However, the 
MI analysis reveals a strong non-linear dependency between the HR data and impulse load. The MI 
between HR and impulse load time-lagged values of one period (𝐼𝐼 − 1) to 10 periods (𝐼𝐼 − 10) range from 
6.3% to 7%. Finally, The MI analysis confirms that the time lagged breathing rate has relatively lower 
influence on the HR data. Based on the Pearson correlation and MI analysis, breathing rate and 
acceleration metrics were removed from the set of predictors. Breathing rate was removed since both 
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correlation and MI analysis show low influence of this metric on the HR data. The acceleration metric 
was removed to reduce the multicollinearity between the predictors since it has a high correlation with 
peak acceleration metric, while having lower MI and correlation with HR compared with peak 
acceleration. 

 
Figure 2.5  Dependencies between time-lagged variables and HR using KNN-MI method 

Seven deep learning algorithms—CNN, LSTM, CNN-LSTM, BiLSTM, GRU, CNN-GRU, and 
BiGRU—are investigated to identify the best deep learning architecture for one-minute ahead HR 
forecasting of construction workers while performing different construction activities in the field. Based 
on the Pearson correlation and MI analysis, time lagged values of HR, peak acceleration, posture, and 
impulse load with lagged values of one period (𝐼𝐼 − 1) to five periods (𝐼𝐼 − 5) are used as features for 
development of deep learning models. To determine the optimal range of lagged periods, different values 
ranging from 1 to 10 were tested and the range of five-time lags resulted in the best overall performance. 
These models are trained using an initial 80% of collected data and tested using the 20% remaining 
datapoints for each of the individuals. Training losses and validation losses for all the models and 
participants were visualized and compared to ensure that they are in line and overfitting did not occur. 

MAE, RMSE, and MAPE are applied to evaluate the predictive performance of the developed models, as 
shown in Table 2.10. Although the values of predictive performance metrices vary over individuals, 
similar ranking of models can be observed. The results of the evaluation metrics indicate that LSTM, 
BiLSTM, GRU, and BiGRU have similar performance according to evaluation metrics. However, LSTM 
has the best overall performance in HR prediction with MAE, RMSE, and MAPE of 5.4, 7.34, and 5.77%, 
respectively. The MAE metric indicates that LSTM has the lowest prediction uniform error over the 
dataset compared with other methods. Similarly, the RSME metric indicates that LSTM has the best 
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performance with respect to the magnitude of errors. The MAPE metric indicates that LSTM has the 
lowest relative error with respect to the magnitude of target values. A visual comparison of the true HR 
values versus predictions indicates that all the developed models have unbiased predictions. As an 
example, the comparison of true HR values versus predictions of the developed models for participant one 
is shown in Figure 2.6. Moreover, one-minute ahead predictions of the top three models, including 
LSTM, BiLSTM and GRU, are shown in Figure 2.7.  

Table 2.10   Performance evaluation of the developed deep learning models 
Subject 
Number Metric LSTM BiLSTM GRU BiGRU CNNLSTM CNNGRU CNN 

1 

MAE 
(BPM) 5.78 5.96 5.96 6.37 6.36 6.65 6.96 

RMSE 
(BPM) 8.03 8.07 8.14 8.54 8.68 8.91 9.38 

MAPE 
(Percentage) 6.96% 7.24% 7.26% 7.83% 7.70% 8.02% 8.50% 

2 

MAE 
(BPM) 4.31 4.47 4.43 4.49 4.75 5.27 8.71 

RMSE 
(BPM) 5.90 5.95 5.94 5.79 6.05 6.68 12.39 

MAPE 
(Percentage) 4.45% 4.63% 4.54% 4.68% 4.98% 5.52% 9.39% 

3 

MAE 
(BPM) 5.79 5.80 5.85 5.69 6.14 5.91 6.04 

RMSE 
(BPM) 7.99 8.09 7.96 7.88 8.19 7.96 8.18 

MAPE 
(Percentage) 5.92% 5.93% 5.98% 5.79% 6.35% 6.05% 6.21% 

4 

MAE 
(BPM) 5.75 5.81 5.75 6.06 6.18 6.39 6.19 

RMSE 
(BPM) 7.70 7.70 7.80 9.30 8.29 8.83 8.54 

MAPE 
(Percentage) 5.96% 6.07% 5.92% 6.14% 6.36% 6.45% 6.30% 

5 

MAE 
(BPM) 5.38 5.20 5.35 5.75 5.66 5.39 5.71 

RMSE 
(BPM) 7.08 6.93 7.14 7.60 7.40 7.15 7.52 

MAPE 
(Percentage) 5.57% 5.37% 5.53% 5.92% 5.86% 5.50% 5.90% 

Average  

MAE 
(BPM) 5.40 5.45 5.47 5.67 5.82 5.92 6.72 

RMSE 
(BPM) 7.34 7.35 7.39 7.82 7.72 7.91 9.20 

MAPE 
(Percentage) 5.77% 5.85% 5.85% 6.07% 6.25% 6.31% 7.26% 
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Figure 2.6  Comparison of true HR values versus predictions of the developed models for participant one 
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Figure 2.7  One-minute ahead predictions of the top three models, including LSTM, BiLSTM, and GRU, 
for all participants 
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2.5 Discussion and Future Work 

The present study analyzed the effects of physiological factors, including breathing rate, acceleration of 
torso movements, torso posture, and impulse load, on the HR of construction workers. Additionally, 
seven deep learning model architectures were investigated to identify the best model architecture for 
forecasting the HR of construction workers. Based on Pearson correlation and entropy-based mutual 
information analysis, time-lagged variables, including acceleration of torso movements, torso posture, and 
impulse load, had a significant effect on the HR data. Moreover, the LSTM demonstrated the best overall 
performance in HR prediction. Such models have the potential to be integrated into real time PSM 
devices, such as Zephyr Bioharness, to provide real-time forecasting of heart rate during workers’ 
ongoing work to prevent cardiovascular overload and to facilitate proactive accident prevention in the 
construction industry. Real-time forecasting of heart rate can alert workers or supervisors before HR 
exceeds accepted thresholds, allowing for timely interventions. In addition, the use of real-time heart rate 
forecasting can allow for the creation of a flexible work/rest schedule to reduce the negative effects of 
sustained high physical demand on workers’ cardiovascular health. In general, forecasting is particularly 
important in construction projects, where workers often perform intensive tasks that can cause physical 
stress and strain on the body. The results of this study may also have broader applications in fields such as 
cardiopathy research, heart attack warning systems, and early physical fatigue detection. 

Although the results of this study cannot be generalized, the obtained errors are compared with those of 
recent studies conducted in fitness training and health care, as presented in Table 2.11. The results suggest 
that the error rates in the present study, as well as in Fedorin et al. (2021) and Zhu et al. (2023) studies on 
fitness training, were slightly higher compared with health care studies. This could be attributed to the 
participants’ environments, as athletes and construction workers experience higher cardiovascular loads 
due to their intense physical activity. Most studies in literature have used photoplethysmography (PPG) 
signal-based devices, which have lower sampling frequency and accuracy compared with the 
electrocardiogram (ECG) signals used in the present study. Lower sampling frequency results in a 
smoother and less complex heart rate profile, which may affect the predictive performance of the 
developed model. In short, smoother and less complex data may result in lower prediction errors. While 
the predictive performance of the developed models can be affected by factors such as the type of heart 
rate sensors, ambient conditions, and activity levels, efforts were made to minimize these impacts and 
results indicate that the models perform comparably to those reported in other studies. 
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Table 2.11  Comparison of the present study with recent studies conducted in other fields 

Reference Field Heart Rate Sensors Features Used for Heart 
Rate Prediction 

Best Model 
Identified 

Performance 
Metrics and 
Their Values 

Zhu et al. 
(2023) 

Fitness 
training

Photoplethysmography 
(PPG) signals 

Previous values of heart 
rate, posture, and 

accelerometer 
LSTM MAE of 4.53 

BPM

Staffini et al. 
(2022)  Healthcare Photoplethysmography 

(PPG) signals 
Previous values of heart 

rate Autoregressive  

MAE of 
3.358 BPM 

and RMSE of 
6.527 BPM 

Fedorin et al. 
(2021)  

Fitness 
training 

Photoplethysmography 
(PPG) signals 

Previous values of heart 
rate and accelerometer 

data 
CNN-LSTM 

MAE of 5.1 
BPM and 

RMSE of 6.1 
BPM 

Alharbi et al. 
(2021) Healthcare Photoplethysmography 

(PPG) signals 
Previous values of heart 

rate GRU RMSE of 
2.377 BPM 

Present study Construction  Electrocardiogram 
(ECG) signals 

Previous values of heart 
rate, posture, and 

accelerometer 
LSTM 

MAE of 5.40 
BPM and 
RMSE of 
7.34 BPM 

The present study has certain limitations that future work could address to expand on the findings. 
Specifically, the study analyzed only a subset of physiological factors related to the worker’s torso 
acceleration (i.e., acceleration, peak acceleration, and impulse load) affecting the HR of construction 
workers, excluding other measures such as electrodermal activity, skin conductance, skin temperature, 
and blood volume pulse. To provide a more comprehensive understanding of the physiological responses 
of construction workers, future studies could incorporate these measures. Although the machine learning 
models developed in the study had adequate data for training and testing for each participant, the 
reliability of the predictions needs to be further tested. Future studies could replicate the study while 
considering more diverse participants and activities and various environmental conditions to draw more 
robust conclusions. Moreover, while the present study’s method ensured the workers’ privacy by 
anonymizing worker data to protect their privacy, and they willingly wore the device throughout the 
project, the feasibility of implementing such interventions in real-world construction settings and 
potential for employer and worker hesitancy regarding the devices need to be addressed. Future studies 
could explore the acceptability and feasibility of such interventions and address the workers’ privacy 
concerns. Finally, the study highlights the potential of integrating the developed models with existing 
classification methods to predict the stress, fatigue, and other status of construction workers. Future 
studies could explore the potential of these models in predicting other physiological responses and their 
applications in the construction industry. 
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2.6 Limitations 

This study collected data from five construction workers over a four-day period. While we acknowledge 
that this is a small sample size, each participant’s dataset included a vast amount of data, including the 
values for the following physiological metrics recorded every second during the four working days of the 
project: breathing rate, acceleration of torso movements, torso posture, impulse load, and heart rate. The 
deep learning algorithms inherently consider the participant’s personality traits, as they utilize data from 
the same person to predict future outcomes specifically for that individual. The objective of our research 
was to forecast the one-minute-ahead heart rate (HR) of a construction worker based on time-lagged 
physiological and activity-related metrics. These types of forecasting problems are known as time series 
multivariate forecasting. In the present study, a personalized approach was taken by developing deep 
learning models for each individual participant. Since the forecasts utilize data from the same person to 
predict future outcomes specifically for that individual, the sample size still provides statistically 
significant findings. 

2.7 Conclusions 

Exceeding physiological thresholds can result in increased risk of incidents and injuries due to fatigue and 
poor judgment, as well as decreased quality of work and productivity. The objective of this study was to 
analyze the effect of physiological factors such as breathing rate, acceleration of torso movements, torso 
posture, and impulse load on the HR of construction workers, and to model and forecast the HR of 
construction workers based on their physical activity. To this end, Pearson correlation and entropy-based 
mutual information were applied to evaluate the dependencies between each of the physiological metrics 
and their effect on the HR values. To examine the physiological metrics and model the HR of 
construction workers, physiological time series data of five bridge maintenance workers were 
continuously recorded while they performed bridge maintenance construction activities. The collected 
time series data include HR, breathing rate, acceleration of torso movements, activity level, and torso 
posture with resolution of one-second intervals. Collected data were analyzed, and seven deep learning 
models were developed to identify the best model architecture to forecast the HR of construction workers. 
Based on the Pearson correlation and entropy-based mutual information analysis, time-lagged variables, 
including acceleration of torso movements, torso posture, and impulse load, have a significant effect on 
the HR data. Moreover, long short-term memory network had the best overall performance in HR 
prediction with mean absolute error, root mean square error, and mean absolute percentage error of 5.4%, 
7.34%, and 5.77%, respectively. The presented approach can potentially be used for real-time forecasting 
of heart rate to alert workers or supervisors before the heart rate exceeds accepted thresholds, allowing for 
timely interventions and increased safety. Furthermore, the use of real-time heart rate forecasting can 
enable the creation of a flexible work/rest schedule, reducing the negative effects of sustained high 
physical demand on workers’ cardiovascular health. This is particularly crucial in construction projects, 
where workers frequently engage in intensive tasks that can lead to physical stress and strain on the body. 
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